Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways.

نویسندگان

  • L Carpio
  • J Gladu
  • D Goltzman
  • S A Rabbani
چکیده

Parathyroid hormone (PTH)-related peptide (PTHrP) can modulate the proliferation and differentiation of a number of cell types including osteoblasts. PTHrP can activate a G protein-coupled PTH/PTHrP receptor, which can interface with several second-messenger systems. In the current study, we have examined the signaling pathways involved in stimulated type I collagen and alkaline phosphatase expression in the human osteoblast-derived osteosarcoma cells, MG-63. By use of Northern blotting and histochemical analysis, maximum induction of these two markers of osteoblast differentiation occurred after 8 h of treatment with 100 nM PTHrP-(1-34). Chemical inhibitors of adenylate cyclase (H-89) or of protein kinase C (chelerythrine chloride) each diminished PTHrP-mediated type I collagen and alkaline phosphatase stimulation in a dose-dependent manner. These effects of PTHrP could also be blocked by inhibiting the Ras-mitogen-activated protein kinase (MAPK) pathway with a Ras farnesylation inhibitor, B1086, or with a MAPK inhibitor, PD-98059. Transient transfection of MG-63 cells with a mutant form of Galpha, which can sequester betagamma-subunits, showed significant downregulation of PTHrP-stimulated type I collagen expression, as did inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) by wortmannin. Consequently, the betagamma-PI 3-kinase pathway may be involved in PTHrP stimulation of Ras. Collectively, these results demonstrate that, acting via its G protein-coupled receptor, PTHrP can induce indexes of osteoblast differentiation by utilizing multiple, perhaps parallel, signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone-related growth factors and zoledronic acid regulate the PTHrP/PTH.1 receptor bioregulation systems in MG-63 human osteosarcoma cells.

Bisphosphonates are known to inhibit osteoclast-mediated bone resorption and osteoblast differentiation and are currently used in the treatment of Paget's disease, osteoporosis, metastatic and osteolytic bone disease and hypercalcaemia of malignancy. The parathyroid hormone-related peptide (PTHrP) and type 1 PTH/PTHrP receptor (PTH.1R) bioregulation systems mediate a wide range of local paracri...

متن کامل

Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress

Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether...

متن کامل

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells.

Biostite is a hydroxyapatite-derived biomaterial that is used in periodontal and bone reconstructive procedures due to its osteoconductive properties. Since the molecular effects of this biomaterial on osteoblasts are still unknown, we decided to assess whether it may specifically modulate osteoblast functions in vitro. We found that a brief exposure to Biostite significantly reduced the prolif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 281 3  شماره 

صفحات  -

تاریخ انتشار 2001